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Abstract. On the basis of the Bethe ansatz solution of the one-dimensional Kondo model with
electronic interaction, the thermodynamics equilibrium of the system at finite temperature is
studied in terms of the strategy of Yang and Yang. The string hypothesis in the spin rapidity is
discussed extensively. The thermodynamics quantities, such as the specific heat and the magnetic
susceptibility, are obtained.

1. Introduction

It is known that the study of exact solutions is helpful in understanding non-perturbative effects
in strongly correlated electronic systems. The exact solution of the one-dimensional Kondo [1]
model with linearized dispersion in the absence of electronic interaction was found in [2, 3].
The model with quadratic dispersion in the presence of electronic interaction was shown to be
exactly solvable at some value of electron-impurity coupling [4].

Here, we study the thermodynamics of the Kondo model in the presence of electronic
interactions. The general thermal equilibrium is discussed exactly on the basis of the known
Bethe ansatz solutions of the model [4]. The specific heat and magnetic susceptibility are
obtained analytically, in general, and given explicitly in the strong-coupling limit. The specific
heat and the magnetic susceptibility at low temperature are discussed. In the next section we
briefly exhibit the model under consideration and its Bethe ansatz solution. In section 3, we
demonstrate the string hypothesis and write out the Bethe ansatz equation in the presence of
complex roots. In section 4, we consider the thermodynamics limit by introducing the density
of roots and holes. In section 5 we derive the free energy of the system at thermal equilibrium
according to the strategy of Yang and Yang [5]. In section 6, We calculate the thermodynamics
quantities, such as the specific heat and the magnetic susceptibility. In the case of the strong-
coupling limit, we find that the contributions of both electrons and impurities to the specific
heat and the magnetic susceptibility is Fermi-liquid-like.

2. The model and its spectrum

The model Hamiltonian of a correlated electronic host with repulsive interaction (u > 0) reads

H0 =
∑

k

ε(k)C∗
kaCka +

∑
k1,k2,k3,k4

uδ(k1 + k2,k3 + k4)C
∗
k4a
C∗

k3b
Ck2bCk1a
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where Cka annihilates an electron with momentum k and spin component a, and ε(k) = k2/2
(in units of h̄ and of the electron mass). The electrons are coupled by both spin and charge
interactions to a localized impurity,

HI = J�∗
a (0)Sab�b(0) · S0 + V�∗

a (0)�a(0)

where the field �a is the Fourier transform of Cka , S0 is the spin of the impurity and S is the
spin of the electrons in the band.

The present model was solved exactly on the basis of the Bethe ansatz with periodic
boundary conditions by considering the system in the Hilbert space of N particles [4]. It was
shown that the model is integrable [4, 6] when u = −J . The Bethe ansatz equations for the
spectrum are

e−ikjL = e−iθ(kj )
M∏
ν=1

λν − kj + iu/2

λν − kj − iu/2
−

M∏
ν=1

λν − λµ + iu

λν − λµ − iu

= λµ − iu/2

λµ + iu/2

N∏
l=1

λµ − kl − iu/2

λµ − kl + iu/2
(1)

where θ(kj ) = 2 tan−1(kj /u). It corresponds to the representation with the state of N −M
spin-up andM spin-down being the highest weight state. Except for the impurity contributions,
the first factors on the right-hand sides of both equations of (1), they are the same as the Bethe
ansatz equation of [7]. In the approximation kj ∼ kl for any j, l, the S-matrix of the electron–
electron interaction will be independent of u. Then the Yang–Baxter equation will give no
restrictions between u and J . This makes it easy to understand the usual Kondo problem where
the linear dispersion relation is adopted, whence the model is solvable at any value of J .

3. String hypothesis

For the ground state (i.e. at zero temperature), the ks and λs are real roots of the Bethe ansatz
equation (1). For the excited state (i.e. at non-zero temperature), however, they can be complex
roots [8, 9]. We will not take account of the complex roots in the charge sector k for repulsive
interaction since it does not happen at low temperature. The complex roots λ in the spin sector
are always for a ‘bound state’ with several other λs, which arises from the consistency of both
sides of the Bethe ansatz equation [8]. The complex roots with the same real part λnβ form an
n-string,

�nmβ = λnβ + i
u

2
m + O(exp(−δN)) (δ > 0)

m = −n + 1,−n + 3, . . . , n− 3, n− 1.
(2)

The set of roots {λν |ν = 1, 2, . . . ,M} is then partitioned into a set of n-strings {�nβ |m =
−n + 1,−n + 3, . . . , n− 3, n− 1;β = 1, 2, . . . ,Mn}. Obviously,

M =
∞∑
n=1

nMn

whereMn denotes the number of n-strings.
Substituting these n-strings into equation (1), we can find that the product of the fractions

for the roots within the same n-string reduces to (λnβ − kj + inu/2)/(λnβ − kj − inu/2) because
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of the alternative elimination between the denominator and numerator. Hence the Bethe ansatz
equation (1) becomes

e−ikjL = e−iθ(kj )
∏
βn

λnβ − kj + inu/2

λnβ − kj − inu/2
(3)

and

−
∏
βm

m−1∏
q=−m+1

�
mq

β −�npα + iu

�
mq

β −�npα − iu
= �

np
α − iu/2

�
np
α + iu/2

N∏
l=1

�
np
α − kl − iu/2

�
np
α − kl + iu/2

. (4)

The product of equation (4) for p = −n + 1,−n + 3, . . . , n− 3, n− 1 gives rise to

(−1)n
∏
βm

λmβ − λnα + i(m + n)u/2

λmβ − λnα − i(m + n)u/2

×
[
λmβ − λnα + i(m + n− 2)u/2

λmβ − λnα − i(m + n− 2)u/2
· · · λ

m
β − λnα + i(|m− n| + 2)u/2

λmβ − λnα − i(|m− n| + 2)u/2

]2

× λ
m
β − λnα + i|m− n|u/2
λmβ − λnα − i|m− n|u/2 = λnα − inu/2

λnα + inu/2

N∏
l

λnα − kl − inu/2

λnα − kl + inu/2
. (5)

Taking the logarithm of equations (3) and (5) we have

kj = 2π

L
Ij +

1

L
θ(kj ) +

1

L

∑
βn

&n/2(λ
n
β − kj )

&n/2(λ
n
α) +

N∑
l=1

&n/2(λ
n
α − kl) = 2πJnα −

∑
βmp

Anmp&p/2(λ
m
β − λnα)

(6)

where &ρ(x) = 2 tan−1( x
ρu
) and

Anmp =




1 for p = m + n, |m− n| (�= 0)

2 for p = n +m− 2, n +m− 4, . . . , |n− n| + 2

0 otherwise.

Ij and J nα are quantum numbers, Ij are integers or half-integers depending on whether M is
even or odd, the J nα are integers or half-integers depending on whetherN −Mn−n+ 1 is even
or odd.

4. The thermodynamics limit

The transcendental equations (6) for the real parts of the complex roots are obviously difficult
to solve. It will be convenient to consider the thermodynamics limit (see, for example, [11]),
i.e. N → ∞, L → ∞ but D = N/L is fixed. Introducing the density distribution of roots
and holes

1

L

dI (k)

dk
= ρ(k) + ρh(k)

1

L

dJ n(λ)

dλ
= σn(λ) + σhn (λ)

(7)
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we obtain from (6) the following set of integral equations:

ρ(k) + ρh(k) = 1

2π
− 1

L
K1(k) +

∞∑
n=1

Kn/2(k|λ′)σn(λ′)

σn(λ) + σhn (λ) = 1

L
Kn/2(λ) +Kn/2(λ|k′)ρ(k′)−

∑
mp

AnmpKp/2(λ|λ′)σm(λ′)
(8)

where Kn(x) = π−1nu/(n2u2 + x2). We have adopted a notation convention Kn(x|y)ρ(y) =∫
Kn(x − y)ρ(y) dy, etc in the above.

In term of the density distributions, the energy and the concentration of electrons as well
as the number of down spins are given by

E = L
∫ ∞

−∞
dk ρ(k)k2

D = N

L
=

∫ ∞

−∞
dk ρ(k)

M

L
=

∞∑
n=1

n

∫ ∞

−∞
dλ σn(λ).

Thus the magnetic moment of the system is

M = 1

2
(N − 2M) + Szimp (9)

= L

2

∫ ∞

−∞
ρ(k) dk − L

∞∑
n=1

n

∫ ∞

−∞
σn(λ) dλ + Szimp (10)

where Szimp denotes the spin of the impurity, and the g factor is set to unity.
The ground state of the present model is a Fermi sea described by ρ(k) with real rapidity

λ, i.e. ρ(k) = 0 for |k| > kF and ρh(k) = 0 for |k| < kF ; σ1(λ) �= 0 but σn(λ) = 0 (n > 1),
which is the case at zero temperature. Away from zero temperature, the density distributions of
roots and holes with respect to the momentum k and the spin rapidity λ should be determined
by the principles of statistical physics. In the next section we will discuss this issue extensively
on the basis of the strategy of Yang and Yang [5].

5. Thermal equilibrium

For a given ρ(k) and ρh(k), the number of roots and that of holes in the neighbourhood
dk are Lρ dk and Lρh dk, respectively. Obviously, the total number of roots and holes in the
neighbourhood isL(ρ+ρh) dk. For a givenσn(λ) andσhn (λ),Lσn dλ andLσhn dλ give rise to the
number of n-strings and the number of the vacancies of n-strings (holes) in the neighbourhood
dλ, while L(σn + σhn ) dλ gives rise to the total number of n-strings and vacancies of n-strings.
Thus the total number of possible choices of the state in dk dλ being consistent with the given
distribution functions in both charge and spin sectors is

4(k, λ) = [L(ρ + ρh) dk]!

[Lρ dk]![Lρh dk]!

∏
n

[L(σn + σhn ) dλ]!

[Lσn dλ]![Lσhn dλ]!
.

As the total number of all possible states for a given distribution function is

4 =
∏
kλ

4(k, λ)
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the total entropy S will be obtained by taking the logarithm of 4,

S/L =
∫ {

[ρ(k) + ρh(k)] ln[ρ(k) + ρh(k)] − ρ(k) ln ρ(k)− ρh(k) ln ρh(k)
}

dk

+
∑
n

∫ {
[σn(λ) + σhn (λ)] ln[σn(λ) + σhn (λ)]

−σn(λ) ln σn(λ)− σhn (λ) ln σhn (λ)
}

dλ (11)

where the Boltzmann constant is set to unity.
In the presence of the external magnetic fieldH , we must add a Zeeman term to the original

Hamiltonian. As the Zeeman term commutes with the original Hamiltonian, the Bethe ansatz
solution is still valid for the present case. Therefore, the energy of the system in the presence
of an external magnetic field will be

E/L =
∫
(k2 −H)ρ(k) dk +

∞∑
n=1

2nH
∫
σn(k) dk. (12)

In order to obtain the thermal equilibrium at temperature T , we should maximize the
contribution to the partition function from the state described by the density distributions of
roots and holes. As maximizing the partition function is equivalent to minimizing the free
energy F = E − T S − µN . Here S and E are given by equations (11) and (12), µ is the
chemical potential for canonical ensembles. µ plays the role of the Lagrangian multiplier
for the condition L

∫
ρ(k) dk = N = constant if one minimizes the Helmholtz free energy

6 = E − T S. This constraint implies that the assembly has a fixed number of particles. The
constraint that the number of down spins is fixed was imposed in [10] when discussing a delta
Fermi gas, whereas we will not impose any physical constraints in the following discussion.

Making use of the relations derived from equation (8)

δρh(k) = −δρ(k) +
∑
n

Kn/2(k|λ)δσn(λ)

δσhn (λ) = −δσn(λ) +Kn/2(λ|k)δρ(k)−
∑
mp

AmnpKp/2(λ|λ′)δσm(λ′)
(13)

we obtain the following conditions from the minimum condition δF = 0, namely

ε(k) = −µ + k2 −H − T
∑
n

Kn/2(k|λ) ln(1 + e−ξn(λ)/T ) (14)

ξn(λ) = 2nH − TKn/2(λ|k) ln(1 + e−ε(k)/T ) + T
∑
mp

AnmpKp/2(λ|λ′) ln(1 + e−ξm(λ′)/T ) (15)

where we have written
ρh(k)

ρ(k)
= exp[ε(k)/T ]

σhn (λ)

σn(λ)
= exp[ξn(λ)/T ].

Principally, once ε(k) and ξ(λ) are solved from equations (14) and (15), the equilibrium
distributions ρ(k) and σn(λ) at temperature T will be known from the following relations:

ρ(k)[1 + eε(k)/T ] = 1

2π
− 1

L
K1(k) +

∑
n

Kn/2(k|λ′)σn(λ′)

σn(λ)[1 + eξn(λ)/T ] = 1

L
Kn/2(λ) +Kn/2(λ|k′)ρ(k′)−

∑
mq

AnmqKq/2(λ|λ′)σm(λ′).
(16)
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The free energy per unit length reads

F/L =
∫

dk ρ(k)
[
k2 − ε(k)−H − T (1 + eε(k)/T ) ln(1 + e−ε(k)/T )

]
+

∑
n

∫
dλ σn(λ)

[
2nH − ξn(λ)− T (1 + eξn(λ)/T ) ln(1 + e−ξn(λ)/T )

]
. (17)

Integrating equation (14) over k after multiplying it with D−1ρ, we obtain the chemical
potential

µ = 1

D

∫
(k2 − ε(k)−H)ρ(k) dk − T

D

∑
n

∫ ∫
Kn/2(k − λ) ln(1 + e−ξn(λ)/T )ρ(k) dλ dk.

(18)

Integrating equation (15) over λ and summing over n after multiplying it with D−1σn, we
obtain the following relation:∑
n

∫
ξn(λ)σn(λ) dλ =

∑
n

2nH
∫
σn(λ) dλ

−T
∑
n

∫ ∫
Kn/2(λ− k) ln(1 + e−ε(k)/T )σn(λ) dk dλ

+T
∑
mnq

Amnq

∫ ∫
Kq/2(λ− λ′) ln(1 + e−ξm(λ′)/T )σn(λ) dλ′ dλ. (19)

Using the relations (18) and (19), we can write out the free energy in terms of ε and ξ only,

F = µN + T
∫ (

K1(k)− L

2π

)
ln(1 + e−ε(k)/T ) dk − T

∑
n

∫
Kn/2(λ) ln(1 + e−ξn(λ)/T ) dλ.

(20)

Consequently, the partition function is given by

Z = e−F/T (21)

where the Boltzmann constant is set to unity.
The thermodynamics functions, partition function Z, free energy F and thermal potential

6, etc, are of importance, as knowing either of them, one is able to calculate all thermodynamics
properties of the system in principle. However, it is difficult to obtain an analytic expression
of ε(k) and ξn(λ) from the coupled nonlinear integral equations (14) and (15). So we are not
able to derive explicit results for thermodynamics quantities. Moreover, we will obtain some
plausible results for some special cases in the next section.

6. Thermodynamic quantities

In general, the free energy of our model should be calculated using formula (20), where ε(k) and
ξ(λ) are determined from equations (14) and (15). Then the other thermodynamic quantities
are obtainable from thermodynamic relations.

In the appendix, we show that ifµ, ε and ξn are implicit functions of some thermodynamic
quantities x (such as T , L), the derivative of equation (20) with respect to x is the same as the
partial derivative of equation (20) with respect to the explicit variable x. It is easy to obtain
the pressure of the system

P = −∂F
∂L

= T

2π

∫
ln(1 + e−ε(k)/T ) dk (22)
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which is formally the same as Yang and Yang’s expression. However, the integral equation
that ε(k) obeys is different. In our present case the contributions from both the impurity and
the spin rapidity are involved.

In terms of ε and ξ , the entropy S = −(∂F/∂T ) becomes

S = −
∫

ln(1 + e−ε(k)/T )
[
− L

2π
+

1

π

u

u2 + k2

]
dk

−
∫

e−ε(k)/T

1 + e−ε(k)/T
ε(k)

T

[
− L

2π
+

1

π

u

u2 + k2

]
dk

+
∑
n

∫
1

π

nu/2

(nu/2)2 + λ2
ln(1 + e−ξn(λ)/T ) dλ

+
∑
n

∫
1

π

nu/2

(nu/2)2 + λ2

ξn(λ)/T

1 + eξn(λ)/T
dλ. (23)

The other thermodynamics quantities are formally obtainable, for example,

CV = T
(
∂S

∂T

)
M = −

(
∂F

∂H

)
χ =

(
∂M

∂H

)
. (24)

For the sake of saving space, we do not write them out.
The free energy (20) is conveniently partitioned as two parts. F = Fe+Fi , hereFi denotes

the contribution from the impurity,

Fi = T

π

∫
u

u2 + k2
ln(1 + e−ε(k)/T ) dk − T

π

∑
n

∫
nu/2

(nu/2)2η2 + λ2
ln(1 + e−ξn(λ)/T ) dλ

and Fe for that from the electrons.

6.1. Strong-coupling limit

For strong coupling u → ∞ and non-vanishing external magnetic field, we keep the leading
term in equations (14) and (15),

ε(k) = k2 −H − µ
ξn(λ) = 2nH.

(25)

The free energy related to the impurity and electrons becomes

Fi = T
∫

dk

π

u

u2 + k2
ln[1 + e(η−k

2)/T ] − T
∑
n

∫
dλ

π

nu/2

(nu/2)2 + λ2
ln[1 + e−2nH/T ]

Fe = µN − T L
2π

∫
ln[1 + e(η−k

2)/T ] dk

(26)

where η = µ +H . Since tan−1(k/u) � k/u for u→ ∞, integrating equation (26) we have

Fi = 4

πu

∫ ∞

0

k2

1 + e(k2−η)/T dk − T
∑
n

ln(1 + e−2nH/T )

Fe = µN − 2L

π

∫ ∞

0

k2

1 + e(k2−η)/T dk.

(27)
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Now we compute the common integration in equation (27),

I =
∫ ∞

0

k2

1 + e(k2−η/T ) dk. (28)

Changing variables of z = (k2 − η)/T brings it to

I = T

2

∫ ∞

−η/T

(zT + η)1/2

1 + ez
dz (29)

which is conveniently split up into three terms,

I = T

2

∫ η/T

0
(η − zT )1/2 dz− T

2

∫ η/T

0

(η − zT )1/2
1 + ez

dz +
T

2

∫ ∞

0

(η + zT )1/2

1 + ez
dz. (30)

The right end of the interval for integration in the second term can be regarded as ∞ as the
contribution from large values of z is negligible. Integrating equation (30) after expanding the
numerator as Taylor series, we obtain

I = 1

3
η3/2 +

T

2

∞∑
n=0

(−1)n
?(n + 1/2)

2
√
π

T 2(n+1/2)

[
1 −

(
1

4

)n+1/2 ]
ζ(2n + 2)

(
1

η

)n+1/2

(31)

where ζ(2n + 2) is the Riemann zeta function. Consequently, the free energy is obtained as

Fi = 4

πu
I − T

∞∑
n=1

ln[1 + e−2nH/T ]

Fe = µN − 2L

π
I.

(32)

6.2. Thermodynamic quantities at low temperature

In the low-temperature approximation, equation (32) becomes

Fi = 4

πu
I − T

∞∑
n=1

e−2nH/T . (33)

The magnetization. The contributions of electrons and the impurity to the magnetization are
obtained

Me = 2L

π
Ih

Mi = − 4

πu
Ih − 2

∞∑
n=1

ne−2nH/T
(34)

where

Ih = ∂I

∂H
Ihh = ∂2I

∂H 2 Itt = ∂2I

∂T 2 . (35)

Clearly, the system has spontaneous magnetization,

Me(H → 0) = L

π
µ1/2 − πL

24
T 2µ−3/2

Mi = − 2

πu
µ1/2 +

π

12u
µ−3/2.
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Specific heat and magnetic susceptibility. The specific heat and the magnetic susceptibility
are

Ce = 2LT

π
Itt

χe = −2L

π
Ihh

Ci = −4T

πu
Itt +

4H 2

T 2
e−2H/T

χi = − 4

πu
Ihh +

4

T
e−2H/T

(36)

where Ce (Ci) is the specific heat of electrons (impurity), and χe (χi) is the magnetic
susceptibility of electrons (impurity).

Wilson’s treatment of the Kondo model by a renormalization-group calculation has made
it possible to determine the proportionality factor (‘Wilson ratio’) relating low- and high-
temperature dimensional scales. When T → 0, because e−2H/T decreases more rapidly than
T , the second term of equation (36) can be neglected. Then we are able to evaluate the Wilson
ratio

R = χi/χe

Ci/Ce
= 1.

As is known R = 2 in the usual Kondo model [2] where the linear dispersion was adopted.
In the present model the charge sector and spin sector is not completely decoupled due to the
electron–electron interaction. In the usual Kondo model, however, the impurity modifies only
the spin sector.

Furthermore, if we ignore the small term in Itt and Ihh, that is we only keep the first
term of each, we find that the impurity’s contribution to the specific heat at low temperature is
Fermi-liquid-like

Ci = − π

3u
(µ +H)−1/2T (37)

and so is the magnetic susceptibility

χi = − 1

πu
(µ +H)−1/2 − πT 2

8u
(µ +H)−5/2. (38)

Obviously, the zero-temperature susceptibility is finite

χi(T = 0) = − 1

πu
(µ +H)−1/2 (39)

indicating that the impurity spin manifest in the high-temperature regime by Curie’s law,
χi ∝ 1/T , is now completely screened. We interpret the effect as being due to effective
coupling of impurity–electron and the electron–electrons leading to the formation of singlet,
and the infrared physics is dominated by a strong-coupling fixed point. The impurity’s
contribution is to suppress the magnetization and give a negative Zeeman energy so that we
obtain the minus sign in (37)–(39).

The electron’s contributions to the specific heat and the magnetic susceptibility are

Ce = πL

6
(µ +H)−1/2T

χe = L

2π
(µ +H)−1/2 +

πLT 2

16
(µ +H)−5/2.

(40)
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We have analysed the thermodynamics of the Kondo model with electronic interactions
and, in particular, discussed the case of the strong-coupling limit extensively. In that case we
have shown the impurity’s contribution to the specific heat and the magnetic susceptibility of
the system is Fermi-liquid-like and shown that at very low temperature the system has the
property of spontaneous magnetization.
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Appendix

Since ε and ξ which solve equations (14) and (15) evidently depend on µ, we should consider
them as functionals of µ which is usually a function of some thermodynamic variable x (such
as T or L). The derivative of the free energy (20) is given by
∂F

∂x
=

(
∂F

∂x

)
µ,ε,ξ

+N
∂µ

∂x
+

∫
dk
L/2π −K1(k)

1 + eε(k)/T
∂ε

∂µ

∂µ

∂x
+

∑
n

∫
dλ

Kn/2(λ)

1 + eξn(λ)/T
∂ξn

∂µ

∂µ

∂x

(A1)

where (∂F/∂x)µ,ε,ξ denotes the partial derivative of F with respect to the explicit variable x,
while µ, ε, and ξ are regarded as irrelevant to x.

The derivative of (14) with respect to µ is

∂ε

∂µ
= −1 +

∑
n

∫
dλ
Kn/2(k − λ)
1 + eξn(λ)/T

∂ξn

∂µ
. (A2)

Integrating (A2) after multiplying both sides with ρ, we obtain∫
dk
∂ε

∂µ
ρ(k) = −N

L
+

∑
n

∫
dλ
∂ξn

∂µ
σn(λ)− 1

L

∑
n

∫
dλ

Kn/2(λ)

1 + eξn(λ)/T
∂ξn

∂µ

+
∑
nmq

∫ ∫
dλ dλ′ ∂ξn

∂µ

Anmq

1 + eξn(λ)/T
Kq/2(λ− λ′)σm(λ′). (A3)

In deriving the above equation, the second equation of equation (16) has been used. We take
a derivative of equation (15), then multiply both sides with σn and integrate over λ. Summing
over the subscript n in what we obtained, we have∑
n

∫
dλ
∂ξn

∂µ
σn(λ) =

∑
n

∫ ∫
dk dλ

Kn/2(λ− k)σn(λ)
1 + eε(k)/T

−
∑
nmq

∫ ∫
dλ dλ′ ∂ξm

∂µ

Anmq

1 + eξm(λ′)/T Kq/2(λ− λ′)σn(λ). (A4)

With the help of the first equation of equation (16), equations (A4) and (A3) give rise to

N +
∫

dk
L/2π −K1(k)

1 + eε(k)/T
∂ε

∂µ
+

∑
n

∫
dλ

Kn/2(λ)

1 + eξn(λ)/T
∂ξn

∂µ
= 0. (A5)

Thus the complete cancellation of the last three terms in equation (A1) concludes that

∂F

∂x
=

(
∂F

∂x

)
µ,ε,ξ

.
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